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Gamma Aminobutyric Acidergic and Neuronal
Structural Markers in the Nucleus Accumbens
Core Underlie Trait-like Impulsive Behavior

Daniele Caprioli, Stephen J. Sawiak, Emiliano Merlo, David E.H. Theobald, Marcia Spoelder,
Bianca Jupp, Valerie Voon, T. Adrian Carpenter, Barry J. Everitt, Trevor W. Robbins, and
Jeffrey W. Dalley
Background: Pathological forms of impulsivity are manifest in a number of psychiatric disorders listed in DSM-5, including attention-
deficit/hyperactivity disorder and substance use disorder. However, the molecular and cellular substrates of impulsivity are poorly
understood. Here, we investigated a specific form of motor impulsivity in rats, namely premature responding, on a five-choice serial
reaction time task.

Methods: We used in vivo voxel-based magnetic resonance imaging and ex vivo Western blot analyses to investigate putative
structural, neuronal, and glial protein markers in low-impulsive (LI) and high-impulsive rats. We also investigated whether messenger
RNA interference targeting glutamate decarboxylase 65/67 (GAD65/67) gene expression in the nucleus accumbens core (NAcbC) is
sufficient to increase impulsivity in LI rats.

Results: We identified structural and molecular abnormalities in the NAcbC associated with motor impulsivity in rats. We report a
reduction in gray matter density in the left NAcbC of high-impulsive rats, with corresponding reductions in this region of glutamate
decarboxylase (GAD65/67) and markers of dendritic spines and microtubules. We further demonstrate that the experimental reduction of
de novo of GAD65/67 expression bilaterally in the NAcbC is sufficient to increase impulsivity in LI rats.

Conclusions: These results reveal a novel mechanism of impulsivity in rats involving gamma aminobutyric acidergic and structural
abnormalities in the NAcbC with potential relevance to the etiology and treatment of attention-deficit/hyperactivity disorder and related
disorders.
Key Words: Attention-deficit/hyperactivity disorder, GABA,
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The concept of impulsivity encompasses a wide variety of
behaviors spanning a failure of motor inhibition to individual
predisposition to choose small, immediate rewards as opposed

to large but delayed rewards (1,2). Deconstruction of this behavior
reveals two main subgroups: 1) motor impulsivity, including motor
response inhibition assessed by failure to stop an already executed
response and the high occurrence of premature or anticipatory
responses; and 2) decisional impulsivity, which includes delay
discounting and reflection impulsivity, involving cognitive choice
mechanisms and the tendency to make rapid decisions without
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adequate consideration of alternatives (1). High levels of impulsivity
are reported in attention-deficit/hyperactivity disorder (ADHD),
conduct disorder, antisocial behavior, and substance use disorder
(3). Here, we focus on a specific form of motor impulsivity in rats,
assessed by the number of anticipatory responses made before the
onset of a visual target stimulus on a five-choice serial reaction time
task (5-CSRTT) (1), a task recently validated in humans to assess
impulsivity in substance addictions and binge-eating disorder (4).

The underlying mechanisms of impulsivity are not well under-
stood but putatively involve deficiencies in norepinephrine and
dopamine (DA) transmission (5–8), together with functional abnor-
malities in the prefrontal cortex (PFC) and striatum (9–15). Research
has implicated the nucleus accumbens (NAcb) as a key brain region
involved in the expression of impulsive behavior (1,16), a function
postulated to involve glutamatergic inputs from the amygdala,
hippocampus, midline thalamus, and PFC, together with DA inputs
from the mesolimbic DA system (17) that impinge on its core
(NAcbC) and shell (NAcbS) subterritories (1,16). Synaptic integration
in the NAcb is governed by convergent glutamatergic and
dopaminergic afferents on medium-sized, densely spiny gamma
aminobutyric acid (GABA)-ergic neurons to determine behavioral
output (18–20). Medium-spiny neurons (MSNs) thus play a critical
role in the integration and gating of synaptic transmission in the
NAcb. Surprisingly, however, few studies have investigated their
involvement in the expression of impulsive behavior.

High impulsivity on the 5-CSRTT is present in 8% to 14% of the
Lister-hooded rat strain and persists throughout adulthood (21,22).
High-impulsive (HI) rats show escalation of intravenous cocaine
and nicotine self-administration (21,23), an increased propensity for
relapse after abstinence, and compulsive drug taking (24,25)
compared with low-impulsive (LI) rats. High impulsivity on the
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5-CSRTT is associated with reduced availability of DA D2/3 receptors
in the ventral striatum (including the NAcb) but not the dorsal
striatum (21,26). In the present study, we extend these findings
using in vivo magnetic resonance imaging (MRI) and ex vivo
protein analysis to isolate structural and molecular biomarkers
associated with high impulsivity in rats. We report that high
impulsivity on the 5-CSRTT is associated with putative alterations
in dendritic spine density and is selectively and causally deter-
mined by GABA-dependent mechanisms in the NAcbC.
Methods and Materials

Subjects
We screened a total of 240 Lister-hooded rats (Charles River,

Kent, United Kingdom) for low and high impulsivity on the 5-
CSRTT. We selected for the present study n = 6 HI rats, n = 43 LI
rats, and n = 6 mid-impulsive (MI) rats. The larger number of LI
rats reflects their use in the glutamate decarboxylase 65/67
(GAD65/67) antisense experiment described below. Surplus HI
and MI rats were used for other studies. Subjects weighed 250
g to 275 g at the start of behavioral training and were housed in
groups of four in humidity- and temperature-controlled holding
rooms (221C) under a reversed light/dark cycle (white lights off/
red lights on from 7:30 AM to 7:30 PM). Rats were mildly food
restricted to no more than 85% of their free feeding weights and
water was available ad libitum. Experimental procedures com-
plied with the United Kingdom Animals (Scientific Procedures)
Act of 1986 and local institutional ethical guidelines.

Impulsivity Assessment
Details of the behavioral apparatus and training are provided

in Supplement 1 and published elsewhere (27). Rats were trained
on the 5-CSRTT to detect the location of brief visual stimuli (.7
sec) presented in a pseudorandom manner in one of five
apertures. Correct responses were rewarded with a food pellet
delivered in the magazine. Incorrect responses and omissions
were signaled by the house light being extinguished for 5
seconds and no food delivery. A premature response was
recorded if subjects responded before the onset of the stimulus
and resulted in the same time-out period and loss
of food reward as incorrect responses. Once rats had acquired
the 5-CSRTT, they were ranked for impulsivity during a 3-week
screening period. Each week consisted of 5 consecutive days of
testing with days 1, 2, 4, and 5 comprising sessions each of 100
discrete trials with an intertrial interval (ITI) of 5 seconds (short
ITI). During day 3, the ITI was increased to 7 seconds to increase
the frequency of premature responses (long ITI). High-impulsive
animals were defined as those making more than 50% of trials
prematurely during each of three long ITI sessions. The lowest
ranked animals were deemed LI, while rats with intermediate
levels of impulsivity were deemed MI.

Morphological Assessment by MRI
Magnetic resonance imaging scanning was carried out in HI,

MI and LI rats (each group n ¼ 6). Rats were anesthetized with 5%
isoflurane and scanned in vivo using a 4.7T Bruker BioSpec 47/40
system (repetition time/effective echo time 3500/36 msec, echo
train length 8, number of excitations 2, 256 � 256 � 96 field of
view, 40 � 40 � 15 mm3, isotropic resolution 156 mm3). A 72-mm
birdcage resonator was used for transmission and signals were
detected with a 20 mm diameter surface coil (Supplement 1,
Morphological Assessment by MRI).
www.sobp.org/journal
Data Processing
Our protocol for voxel-based morphometry was based on

published methodology (28). Images were corrected for intensity
nonhomogeneity due to the surface coil and then segmented into
tissue maps corresponding to canonical gray matter (GM), white
matter, and cerebrospinal fluid using SPM5 (29) (Wellcome Depart-
ment of Clinical Neurology, London, United Kingdom; http://www.
fil.ion.ucl.ac.uk) with the SPMMouse plugin (30). The resulting
images were smoothed with an 800 mm isotropic Gaussian kernel
using statistical parametric mapping and used as tissue probability
maps in the unified segmentation algorithm (31).

Smoothed GM maps were fitted to a block design model to
reveal differences between the LI, MI, and HI rats. A two-tailed
Student t test was used to detect voxels where the mean GM
signal differed between groups. The false discovery rate was
controlled at a threshold positive false discovery rate �.05 as a
control against multiple comparisons (32). The correlation between
the GM score and impulsivity scores was determined by Pearson
product-moment correlation coefficient (r). Williams test was used
to evaluate the differences between the two dependent rho values
(i.e., elements deriving from the same correlation matrix) calculated
separately for the left and right hemispheres.

Western Blot Analysis
One week after the completion of MRI scanning, HI and LI rats

were sacrificed by carbon dioxide inhalation; thereafter, their
brains were removed and snap-frozen at �801C. Samples of the
NAcbC and NAcbS, frontoparietal cortex, and caudate putamen
(CPu) were microdissected with a .75 mm2 diameter punch from 1
mm sections of brain. Samples from one HI rat were lost during
processing. Therefore, the final dataset for this aspect of the study
contained n ¼ 6 LI rats and n ¼ 5 HI rats.

Immunodetection was performed using: 1) polyclonal rabbit
anti-glial fibrillary acidic protein (Dako Cytomation, Glostrup,
Denmark), a glial marker; 2) monoclonal mouse anti-Neuronal
Nuclei (NeuN) (Millipore, Billerica, Massachusetts), a neuron-
specific marker; 3) polyclonal rabbit anti-glutamate decarboxylase
65/67 (Millipore), the primary GABA synthesizing enzyme;
4) polyclonal rabbit anti-Neurabin II (Spinophilin; Sigma-Aldrich,
St. Louis, Missouri), a dendritic spine marker; 5) monoclonal
mouse anti-Microtubule Associated Protein 2 (MAP2) (Sigma), a
marker for somatodendritic microtubule protein; and 6) mono-
clonal mouse anti-β-Actin (Abcam, United Kingdom), a house-
keeping protein used as a loading control. Data analyses are
described in Supplement 1, Western Blot Analysis.

Antisense Oligodeoxynucleotides
Fully deprotected and desalted phosphorothioate oligodeox-

ynucleotides (ODNs), purified by polyacrylamide gel electropho-
resis, were purchased from Sigma. Oligodeoxynucleotides were
phosphorothioated on the three terminal bases of both 5’ and 3’
ends to increase stability and minimize nonspecific toxicity.
Oligodeoxynucleotide sequences and concentrations were
derived from previous studies (33,34): glutamate decarboxylase
67 (GAD67) antisense oligonucleotide (ASO), glutamate decarbox-
ylase 65 (GAD65) antisense, scrambled sequence control for
GAD67, and scrambled sequence control for GAD65.

Intracerebral Cannulation
Rats destined for the glutamate decarboxylase antisense

experiments were ranked for low impulsivity as described above
(n = 23). General anesthesia was induced with isoflurane (5%) and
maintained throughout the surgery at 1.5% to 2% (flow rate,
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2 L/min). Bilateral 22-gauge double-lumen guide cannulae (Plas-
tics One, Sevenoaks, United Kingdom) were implanted above the
NAcbC. Stereotaxic coordinates relative to bregma were: anterior-
posterior �1.5 mm, medial-lateral �1.9 mm, and dorsal-ventral
�2.2 mm. Guide cannulae were occluded by a stylet and secured
to the skull with dental cement and three stainless steel screws.

Intracerebral ODN Administration
Infusions were given at 08:00, 8 hours before behavioral

testing. Rats were then returned to their home cage until
behavioral assessment on the 5-CSRTT. Injectors aimed at the
NAcbC and CPu extended, respectively, 4.5 mm and 2 mm from
the ventral tips of the guide cannulae. Infusions were made over
72 seconds (.3 mL per hemisphere) and based on a previous study
containing 600 ng of either GAD65/67 antisense (ASO) or scramble
(Scr) pairs (33,34).

Antisense Behavioral Procedure
Following surgery, LI rats were run on the 5-CSRTT (ITI = 5 sec)

for 5 consecutive days. They were then challenged with three
long intertrial interval sessions (ITI = 7 sec), each spaced 2 days
apart, to obtain a stable level of premature responding. Rats were
assigned to four groups matched for behavioral performance on
the 5-CSRTT. The testing phase consisted of three long ITI sessions
(ITI = 7 sec) spaced 2 days apart. On day 1, all rats received a
bilateral infusion of phosphate-buffered saline (ODN vehicle) in
the NAcbC. On day 2, one group received a bilateral infusion of
GAD65/67 ASO, two groups received a unilateral infusion of GAD65/67

ASO (left or right, with Scr infused in the contralateral NAcbC),
while the remaining group received Scr bilaterally in the NAcbC.
On test day 3, rats that received a bilateral infusion of ASO or Scr
were infused with phosphate-buffered saline to assess recovery.
The remaining groups received a bilateral infusion of GAD65/67

ASO or Scr in the CPu. We validated the procedure in a separate
group of selected LI rats (n = 14) to investigate the magnitude of
reduction in GAD65/67 expression in the NAcb.

Locomotor Activity
Spontaneous locomotor activity was assessed on the second

test day, immediately after the completion of the 5-CSRTT
behavioral session using six individual activity cages (20 � 25 �
20 cm). Each chamber contained two photocell beams located
1 cm above the floor and spaced evenly along the length of the
cage. Two days before the locomotor activity assessment, rats
were exposed to the chamber for 1 hour. A run was recorded
if the two beams were broken within 200 milliseconds. Run data
were collated into 18 � 5 minute bins.

Histological Assessment of Cannulae Placement
At the completion of the experiment, rats were sacrificed with

an intraperitoneal injection of sodium pentobarbital and perfused
transcardially. Cannulae placements were verified under a light
microscope and mapped onto published coronal sections of the
rat brain (35).

Results

Stratification of Low and High Impulsive Rats
Behavioral attributes of LI, MI, and HI rats on the 5-CSRTT are

shown in Figure 1A and Table S1 in Supplement 1. We ranked and
selected rats to form three groups based on the number of
premature responses on the 5-CSRTT: HI rats that responded
prematurely on more than 50% of trials (mean 76.6, n ¼ 6); LI rats
that were the lowest ranked animals (mean 24.7, n ¼ 6); and MI
rats that exhibited an intermediate level of impulsivity (mean
44.9, n ¼ 6). With the exception of attentional accuracy, which
showed a significant decrease in HI rats compared with LI and MI
rats during the long ITI (HI vs. LI [p � .01]; HI vs. MI [p � .05])] but
not during the shorter ITI (Table S1 in Supplement 1), no other
behavioral variable was significantly affected in HI rats.

MRI Localization of Highly Impulsive Behavior to the Left
Nucleus Accumbens Core

We carried out a voxel-based morphological investigation of
HI, MI, and LI rats using MRI. Three-dimensional reconstruction
(Figure 1B) revealed a significantly reduced density of gray matter
in the left NAcbC of HI rats (p � .05, false discovery rate corrected;
HI vs. LI rats), which correlated inversely with the quantitative
index of impulsivity on the 5-CSRTT (p � .001; r ¼ �.87;
Figure 1C). However, we found no significant correlation between
gray matter score in the right NAcbC and impulsivity (Figure 1C
insert). The lateralized relationship between gray matter density
in the left NAcbC and impulsivity was confirmed by a significant
pair-wise comparison between correlation coefficients for the left
and right NAcbC (Williams test, p � .01).

Highly Impulsive Behavior Is Associated with a Reduced
Expression of Dendrite Spine Markers and GAD65/67 in the
Left Nucleus Accumbens Core

We next used Western blot analysis to investigate structural,
neuronal, and glial protein markers in the NAcbC, NAcbS, CPu, and
frontoparietal cortex (Figure 1D) of the same HI and LI rats used above
for MRI (Figure 2A). We found significantly lower levels of glutamate
decarboxylase (GAD65/67; p � .01, Figure 2B), as well as the dendritic
marker microtubule associated protein (MAP2; p� .05, Figure 2B) and
the dendritic spine marker spinophilin (p � .05, Figure 2B) in the left
NAcbC of HI rats compared with LI rats. There were no significant
differences in any of these markers in the right NAcbC, although there
was a trend for GAD65/67 to be decreased in HI rats (p ¼ .06,
Figure 2C). We also identified a significant negative correlation
between levels of GAD65/67 (p � .01; r ¼ �.71; Figure 2D) and
MAP2 (p� .05; r ¼ �.66; Figure 2E) in the left NAcbC and impulsivity.
Levels of spinophilin in the left NAcbC also showed a trend negative
correlation with impulsivity (p ¼ .074; r ¼ �.47; Figure 2F). We found
no differences between HI and LI rats in relation to a neuronal marker
(NeuN) and a glial marker (glial fibrillary acidic protein) in the left or
right NAcbC (Figure S1A in Supplement 1), NAcbS (Figure S1B in
Supplement 1), CPu (Figure S1C in Supplement 1), or frontoparietal
cortex (Figure S1D in Supplement 1). In addition, there was no
significant difference between HI and LI rats in GAD65/67 content in
the NAcbS (Figure S1B in Supplement 1), CPu (Figure S1C in
Supplement 1), or frontoparietal cortex (Figure S1D in Supplement 1).

Experimental Reduction of De Novo GAD65/67 Protein
Expression in the Nucleus Accumbens Core Is Sufficient to
Increase Impulsivity

Finally, we investigated the effects of unilateral and bilateral intra-
NAcbC microinfusions of GAD65/67 antisense oligodeoxynucleotides
on impulsivity in LI rats (n ¼ 23) (Tables S2 and S3 in Supplement 1).
We found that GAD65/67 ASO resulted in a significant increase in
impulsive responding in LI rats (n ¼ 7; Figure 3B) compared with a
second group of LI rats infused with a scrambled oligodeoxynucleo-
tide sequence (Scr, n ¼ 6; Figure 3A) (p � .05, Figure 3E). This effect
was behaviorally selective with no significant effect of GAD65/67 ASO
on locomotor activity or the speed and accuracy of responding on
the 5-CSRTT (Table S2 in Supplement 1). Furthermore, we found no
www.sobp.org/journal



Figure 1. High impulsivity in rats is associated with a reduced density of gray matter (GM) in the left nucleus accumbens (NAcb) core. (A) High-impulsive
rats (HI, n ¼ 6) make more premature responses on the five-choice serial reaction time task compared with mid-impulsive rats (MI, n ¼ 6) and low-
impulsive rats (LI, n ¼ 6) when the prestimulus waiting interval is increased to 7 seconds (long intertrial interval [LITI] ¼ 7 sec) from the intervening
5-second interval (indicated by b). (B) Voxel-based morphometry analysis of orthogonal coronal (i), sagittal (ii), and horizontal (iii) sections superposed on
an averaged magnetic resonance imaging template. The results indicate a significant reduction in the density of gray matter in the left NAcb core with a
cluster extent of 29 voxels (uncorrected F1,16 ¼ 116.2, pfamily-wise error ¼ .003), centered 2.3 mm anterior to bregma, 2.2 mm medial-lateral, 7.4 mm dorsal-
ventral (35). (C) Negative correlation between impulsivity and GM scores, reported for individual subjects, of the most significant voxels in the left NAcb
core (r ¼ �.87, p � .001). The insert graph shows the corresponding, nonsignificant relationship between impulsivity and GM scores in the right NAcb
core. (D) Three-dimensional composite image of the rat forebrain showing brain areas selected for Western blot analysis. C, cortex; CPu, caudate putamen;
L, left; R, right.
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significant effect on impulsive responding or the speed and
accuracy of responding on the 5-CSRTT, following a unilateral (left
or right) microinfusion of GAD65/67 ASO in LI rats (Figure S2 and
Table S3 in Supplement 1). We next injected GAD65/67 ASO or Scr
bilaterally in the CPu. This intervention had no significant effect
on impulsivity or the speed and accuracy of responding on the 5-
CSRTT (Figure S2 and Table S3 in Supplement 1).

We validated the procedure in a separate group of selected LI
rats (n ¼ 14) to investigate the magnitude of reduction in GAD65/67

expression in the NAcbC. We observed a significant reduction of
GAD65/67 protein levels after infusion of ASO compared with rats
injected with Scr (p � .05) in the NAcbC (Figure 3C). However, we
observed no significant effect of the ASO infusions on GAD65/67

expression in the NAcbS (Figure 3D), thus confirming the local-
ization of the ASO infusions to the NAcbC.

Discussion

We report a strong relationship between impulsivity on the
5-CSRTT and neuronal changes in the nucleus accumbens core,
www.sobp.org/journal
implicating alterations in GABA-containing neurons in this region.
Our findings indicate a reduction in gray matter density in the
NAcbC of HI rats, with corresponding reductions in this region of
glutamate decarboxylase (GAD65/67), as well as dendritic spine
and microtubule markers. We further demonstrate that the
experimental intervention of reducing de novo GAD65/67 expres-
sion by infused antisense bilaterally in the NAcbC was sufficient
to increase impulsivity, but not locomotor activity, in LI rats.
These results suggest a novel mechanism of impulsivity in rats
involving GABA-ergic dysfunction and putative alterations in the
density of dendritic spines in the NAcbC with potential relevance
to the etiology and treatment of ADHD and related disorders.
Importantly, control manipulations confirmed that infusions of
antisense in the NAcbC did not alter GAD65/67 levels in the NAcbS,
while bilateral ASO infusions in the CPu had no significant effect
on impulsivity. The close convergence in results between in vivo
voxel-based MRI and ex vivo protein chemistry indicates puta-
tively related abnormalities in the density and structure of
dendrites and dendritic spines, especially in the left NAcbC. Our
results suggest that high impulsivity may be caused by impaired



Figure 2. High impulsivity in rats is associated with a significant reduction in glutamate decarboxylase (GAD)65/67, microtubule-associated protein 2
(MAP2), and spinophilin (Spinoph) in the left nucleus accumbens (NAcb) core but not right NAcb core. (A) Representative immunoreactive bands from
samples of the left and right NAcb core in low-impulsive (LI) and high-impulsive (HI) rats. (B) Densitometric quantification (relative optical density [R.O.D.]
expressed as a % of the mean value of LI rats) of left NAcb core revealed a significant reduction of GAD65/67 (t9 ¼ 3.48, **p � .01), MAP2 (t9 ¼ 2.34, *p �
.05), and spinophilin (t9 ¼ 2.43, *p � .05) in HI rats compared with LI rats. Data are expressed as mean � SEM. (C) Densitometric analysis of samples from
the right NAcb core revealed no significant differences in GAD65/67, MAP2, and spinophilin (GAD65/67; t9 ¼1.66, p ¼ .13). (D–F) Correlation between
impulsivity scores and the relative optical density of GAD65/67 ([D] r ¼ �.71, p � .01), MAP2 ([E] r ¼ �.66, p � .05), and spinophilin ([F] r ¼ �.47, p ¼ .074)
in left NAcb core. Insert graph shows equivalent data for the right NAcb core.
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synaptic integration of dopaminergic and glutamatergic affer-
ents, specifically targeting the dendritic spines of GABA-ergic
MSNs (36).

The present data add to growing evidence that impulsive
responding on the 5-CSRTT can be modulated by interventions
targeting the NAcbC. Thus, the effect of d-amphetamine to
increase impulsivity on this task was blocked by intra-NAcbC
infusions of the D2/3 receptor antagonist eticlopride (37). Impulsiv-
ity resulting from lesions of the PFC was also selectively blocked by
intra-NAcbC infusions of the D2/3 receptor antagonist sulpiride (38).

The NAcbC also plays a key role in delay-discounting impul-
sivity. Thus, selective lesions of the NAcbC increased impulsive
preference of rats for small, immediate rewards versus large but
delayed rewards (16,39–42). Notably, rats selected for high
impulsivity on the 5-CSRTT also showed steep discounting
functions for delayed rewards (43). Furthermore, these studies
are consistent with functional magnetic resonance imaging
studies in humans showing a correlation of impulsive choice
with ventral striatal/NAcb activity (44,45) and altered ventral
striatal activity in response to immediate and delayed rewards
in patients with ADHD (46). Our molecular findings indicate, for
the first time, that these impulsive responses may be modulated
by an underlying impairment in GABA-ergic function in the
NAcbC. However, further studies are needed to establish a role
of GABA-ergic mechanisms in delay-discounting impulsivity
as opposed to the form of impulsivity assessed in the present
study.

While we did not observe differences in NeuN, suggesting that
the number of neurons in the left NAcbC was unaltered in HI rats,
the structural integrity and presumed density of dendritic spines in
this region were severely affected and inversely predicted impul-
sivity on the 5-CSRTT. As dendritic spines represent the key loci of
synaptic integration between excitatory glutamatergic projections
from the PFC and dopaminergic inputs from the midbrain (47),
these findings may suggest the NAcbC to be the neural locus of
DA D2/3 receptor dysfunction in impulsive rats (21). However, a
recent ex vivo autoradiography study from our group found that
DA D2/3 receptors were reduced bilaterally in the NAcbS, not the
www.sobp.org/journal



Figure 3. Bilateral reduction in glutamate decarboxylase 65/67 (GAD65/67) protein in the nucleus accumbens (NAcb) core increases impulsivity in low-
impulsive rats on the five-choice serial reaction time task. (A) Individual responses of rats to GAD65/67 scrambled (Scr) sequence in the NAcb core showing
no effect on premature responding compared with vehicle infusions in this region (n ¼ 6). The insert graph shows the intended location of the
oligodeoxynucleotide (ODN) microinfusions in the NAcb (35). (B) Individual responses of rats to GAD65/67 antisense in the NAcb core showing increased
premature responding compared with vehicle infusions (n ¼ 7). (C) Representative immunoblot and related densitometric analysis showing GAD65/67

antisense-induced decrease of GAD65/67 protein levels 8 hours after intra-NAcb core microinfusions in selected LI rats. *p � .05. (D) Representative
immunoblot and related densitometric analysis of the adjacent NAcb shell showing no differences between GAD65/67 protein levels 8 hours intra-NAcb
core microinfusions in low-impulsive rats. (E) Histograms show difference scores (� SEM) between the effects of vehicle infusions (pre-ODN and post-
ODN) and ODN infusions (Scr and antisense oligonucleotide [ASO]). *p � .05 (Scr vs. ASO). (F) Injector tip locations in the NAcb core of rats injected with
GAD65/67 Scr (left) and ASO (right). Anterior-posterior (AP) coordinates are relative to bregma (mm) (35). DV, dorsal ventral; ML, medial lateral; R.O.D.,
relative optical density; Vehicle-post/pre, GAD 65/67 ODNs exposure.
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NAcbC (26). This may be consistent with other evidence of
opponent interactions between the NAcbS and the NAcbC (48,49).

Recently, we reported a reduction in DA D1 receptors in the
left NAcbC of HI rats compared with LI rats (26). Since DA D1
www.sobp.org/journal
receptors are located postsynaptically on the dendrites of GABA-
ergic MSNs, these results collectively support the hypothesis that
dendritic spines may be reduced in density in the NAcbC of HI
rats. Moreover, a reduction in DA D1 receptors in the left NAcbC
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may have been responsible for the observed reduction in GAD65/67

in this region. In support of this hypothesis, previous research has
shown that intrastriatal administration of D1 receptor agonists
increases GAD65 expression in striatal neurons (50,51) and
facilitates GABA release in the substantia nigra pars reticulata (52).

Our results indicate a strong inverse relationship between
GAD65/67 and behavioral impulsivity (Figure 3). Although the
reduction of GAD65/67 was striking in the left NAcbC, lower levels
of GAD65/67 were also present in the right NAcbC of HI rats
compared with LI rats (Figure 2C). This partial asymmetry in
GAD65/67 levels between the left and right NAcbC of HI rats, in
relation to LI rats, may explain why left-sided infusions of GAD65/67

ASO were insufficient to increase impulsivity in LI rats. Therefore,
depletion of GAD65/67 in both the left and right NAcbC appears
necessary for the expression of impulsivity. The origin of the
hemispheric imbalance reported in the present study is unknown
but may arise from genetic and/or environmental factors affect-
ing trophic signals during development (53). Left/right asymme-
tries are often reported in rats (54,55) and brain disorders,
including ADHD (56,57).

To date, there has been limited research on the role of GABA
in impulsivity. However, male mice with a mutation to the fragile
X mental retardation 1 gene (Fmrl) showed impaired attention
and inhibitory response control, just like HI rats in the present
study. Moreover, mutant Fmrl mice show a reduced expression of
brain GAD67 (58,59). In rats, inhibition of GABA synthesis in the
PFC led to a marked increase in locomotor activity but did not
affect visual attention on the 5-CSRTT (60). In the present study,
inhibition of GAD65/67 expression in the NAcbC had no effect on
either locomotor activity or visual attention but selectively
increased impulsivity. Thus, our findings strongly indicate that
trait-like impulsivity on the 5-CSRTT is linked to GABA dysfunction
in the NAcbC. Although a recent autoradiography study found no
abnormalities in benzodiazepine-sensitive GABA type A receptor
binding in the NAcb of HI rats (26), a variety of benzodiazepine-
insensitive GABA type A receptor subunits are expressed in this
region (61), which may be subject to differential regulation and
expression in highly impulsive rats. In light of the present
findings, this possibility merits further investigation.

Conclusions and Clinical Implications
The marked, mainly asymmetric decrease in gray matter and

markers of GABA and dendritic function in the NAcbC suggest a
novel mechanism underlying the etiology of a form of impulsivity
linked to ADHD and comorbid disorders such as drug addiction.

Although the presumed genetic and environmental factors
leading to the origin of this candidate neurobehavioral endophe-
notype require further investigation, our findings converge on the
conclusion that GABA-related mechanisms may play a necessary
role in the expression of impulsivity. Premature responding on the
5-CSRTT assesses several putative aspects of impulsivity, including
timing, behavioral inhibition, and the capacity to tolerate delayed
rewards (1). Rats exhibiting high impulsivity on this task are also
delay averse and preferentially choose small, immediate rewards as
opposed to large but delayed rewards (43). Clinically, an inability to
delay gratification is strongly linked to alcoholism (62–64) cocaine
and heroin addiction (65–67) and in rats is exacerbated by lesions
of the NAcbC (39). A novel analogue of the rodent serial reaction
time task has recently been developed with utility in human
substance addictions and binge-eating disorder (4).

Our results not only confirm an important role for the NAcbC
in a form of impulsivity indexed by the 5-CSRTT and delay
discounting [previously described as waiting impulsivity (43)] but
also begin to elucidate the underlying molecular and neuronal
changes associated with this trait. Pathological abnormalities in
the integrity of dendritic spines on MSNs in the NAcbC may be
relevant for understanding why HI rats are predisposed to
escalate nicotine and cocaine self-administration and to relapse
after abstinence (21,23,24,36,68).

In addition, our molecular findings may be relevant to the
mechanism of action of stimulant drugs such as methylphenidate
and amphetamine in ADHD (1,67). Medium-spiny neurons in the
NAcbC are particularly sensitive to a decrease in spine density in
the absence of DA (69). Since DA release is reportedly decreased
in the NAcbC of impulsive rats on the 5-CSRTT (23), this may be
a factor contributing to the hypothesized reduction in spine
density on MSNs in the NAcbC of HI rats. Although this hypothesis
requires confirmation using more direct techniques, for example,
Golgi staining and the quantitative assessment of dendritic spine
density in LI and HI rats, it is noteworthy that the stimulant drug
cocaine increases dendritic spine density, especially in the NAcbC
(70,71). Thus, the clinical efficacy of stimulant drugs in ADHD may
be mediated by dynamic molecular events that restore spine
density on MSNs in the NAcbC.
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